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SUMMARY

The frequency behavior of the scattered acoustic field produced by a plane wave

impinging on an elastic body immersed in an infinite fluid medium is dominated in
certain frequency ranges by large peaks arising from resonant modes in the elastic

structure. Computational models have been developed at the Naval Ocean Systems

Center for solving these elastic scattering problems. This report shows that the

scattered pressure can be represented as a sum of contributions from in vacuo modes

of the structure. The spectral response of individual terms in this summation can be

used to identify wlich modes contribute to each peak in the overall spectral response
of the scattered field. In many cases a small number of modes dominate the response

in the vicinity of these peaks.
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INTRODUCTION

The frequency behavior of the scattered acoustic field produced by a plane wave
impinging on an elastic body immersed in an infinite fluid medium is dominated
in certain frequency ranges by large peaks arising from resonant modes in the elas-
tic structure. A technique for computing the scattered acoustic field was described
in a previous Naval Ocean Systems Center (NOSC) technica! report (Schenck and
Benthien, 1989). This technique makes use of a finite element model of the elastic
structure and a Helmholtz integral model (CHIEF) (Benthien, Barach, and Gillette,
1988) (Schenck, 1968) of the acoustic medium. The purpose of the present report
is to show how quantities computed with the above technique can be used to iden-
tify which in vacuo structural modes are the main contributors to each peak in the
scattered field frequency response.

The second section of this report contains a brief survey of the numerical approach
used to solve the acoustic scattering problem as well as the basic equations needed
for identifying modal contributions. The third section contains numerical results
obtained by applying the modal idcntification technique to two scattering problems.
The fourth section contains a brief summary of conclusions which illustrate the utility
of this technique in understanding the underlying structure of the scattered field.
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BASIC EQUATIONS

Throughout this section all pressures, displacements, and velocities will be repre-
sented by their complex, frcquency dependent Fourier components corresponding to
the time dependence e t. The elastic structure is modeled using the finite element
equations (Zienkiewicz, 1977)

(-W 2Al + K)U = F, (1)

where M is the mass matrix, K is the stiffness matrix, F is the load vector, and
U is a vector whose components are the displacement degrees-of-freedom at all the
nodes in the body. In the scattering problem under investigation, the load vector F
is completely determined by the acoustic pressure p on the wet surface S of the body.
The components of F are given by

Fm= -P' .ndS, (2)

where p is the acoustic pressure, n is a unit normal to S pointing into the fluid, and
,0m is a finite element vector interpolation function. The displacement u(x) at a point
x in the body can be expressed in terms of the interpolation functions 0m as follows:

MUW(x = EU0,,X (3)

where U,..., Upj are the components of U.

The CHIEF formulation of the acoustic part of the problem is based on the
Helmholtz integral relations. The surface Helmholtz integral equation is approxi-
mated by the system of algebraic equations

AP = BV + pinc, (4)

where the matrices A and B involve integrals of the free-space Green's function and
its normal derivative over the subdivisions S, of S; P and V are vectors whose nth
components are the pressure and normal velocity (assumed to be constant) on the
subdivision S, of S; and pin, is a vector (Benthien, et al., 1988) whose nth component
is the value of the incident pressure wave at a reference point on S,,. The scattered
pressure p" at a field point x exterior to the body can be approximated by

a(T) = a (x)P + bT(x)V, (5)

where a(x) and b(x) are vectors whose components (Benthien, et al., 1988) involve
integrals of the free-space Grccn's function and its normal derivative over the subdi-
visions S, and evaluated at the field point x. Equations (4) and (5) can be combined
to give

p'(x) = qT(x)V + p,,(x), (6)
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where
qT(x) = aT(x)A-1 B + bT(x)

and
pr(x) = aT (x)A-1pinc.

It can be seen from equation (6) that prs(x) is the rigid scattering from the body (i.e.,
the scattered pressure when v is constrained to be zero).

Applying the assumption that p is piecewise constant on the subdivisions of S to
equation (2), gives

F = -CDP, (7)

where

Cmnr n= n S--: n m. a

and
D = diag(S 1, S2,..., SN).

Equations (1) and (7) can be combined to give

U = -(-w 2 M + K)-I'CDP. (8)

Since different interpolation schemes are used in the finite element model of the
structure and the CHIEF model of the acoustic medium, it is impossible to enforce
exact continuity of normal displacement across S. However, this continuity is ap-
proximately enforced by equating the CHIEF normal velocity v, to the average of
the finite-element normal velocity over S,, i.e.,

V J - - .iwu . ndS. (9)

Combination of equations (3), (8), and (9) gives

V = iwCTU

= -iwcT(-w 2M + K)-'CDP. (10)

Let E be a matrix whose columns are the in vacuo normal modes of the structure,

l'E = MEf, (11)

where Q = diag(w),.j...W) is the diagonal matrix of eigenfrequencies. Since the
modes are M-orthogonal, they can be normalized so that

ETME = I. (12)
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It is easily verified that the inverse matrix (-w 2 M + K)- 1 can be expressed in terms
of the normal mode matrix E as follows:

(-w 2 M + K)-' = E(-w 2I + l)-'ET. (13)

This form is convenient since the diagonal matrix (-w 21 + Q) is easily inverted at all
frequencies. Combination of equations (10) and (13) gives

V -iwCTE(-w 2I + Q)-ETCDP. (14)

Equations (4) and (14) can now be combined to give

[A + iwBCTE(-w 2I + Q)-ETCD]P = pine. (15)

Equation (15) can be solved for the surface pressure vector P. Once P is determined,
the velocity vector V can be obtained from equation (14) and the scattered pressure
p- (x) can be computed at any exterior field point x using equations (5) or (6).

The remainder of this section will be devoted to the development of a modal
expansion for p-(x). Each column of E represents an in vacuo mode of the structure.
If e, is the nth column of E, then equation (13) can be written in Lhe alternate form

MM I1
(-w 2 M + K)-' = - e e T "  (16)

M= L2 _ 2 emm

Combination of equations (8) and (16) gives

M (eCDP em. (17)
U Z1 \W2 -W2)e.(7

In view of equation (10), it follows that

V
V iw l (-2 - -W2 CTeM. (18)

Substitution of equation (18) into equation (6) gives

M (eT CDP qT(x) C T e m

p'(x) - pT (x) = iwo 1 (W2 -W2 (19)
m=1 m

The nth term of the sum in equation (19) is the contribution of the mode en to
the scattered field. Once equation (15) is solved for P, the contributions of various
modes can be determined by plotting individual terms of equation (19) or partial
sums of equation (19) versus frequency and comparing the results with the plots of
p8 (x) - prS(x) versus frequency.
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NUMERICAL RESULTS

In this section, the results of the previous section will be applied to two scatter-
ing problems. The first problem consists of determining the scattered acoustic field
produced when a plane incident wave strikes a hollow spherical shell. The ratio of
the shell thickness to the mean radius is 0.03 . The material parameters of the shell
are

* Density = 7669 Kg/m 3

* Young's modulus = 2.07 x 101

• Poisson's ratio = 0.3.

The material properties of the water are

* Density = 998 Kg/m 3

* Sound Speed = 1486 m/s.

Figure 1 shows the contributions of the second (the so-called accordion) mode to the
magnitude of the form function. The dotted curve is the sum of the rigid scattering
form function and the form function obtained by using the rn = 2 term of equation
(19). It should be noted that the eigenfrequency of mode 2 in vacuo occurs at a ka
of 2.55, whereas its contribution to the overall response occurs at a ka of about 1.58
due to the mass-like loading of the acoustic field. Figure 2 shows a similar result for
the fourth structural mode. In fact, each of the peaks shown in the overall response
is primarily due to a single (higher frequency) in vacuo mode of the spherical shell.
This simple situation is not usually observed in the scattered field produced by other
shapes where peaks are often due to the interaction of several structural modes. This
will be illustrated in the second example.
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Figure 1. Contribution of mode 2 to backscattering from spherical shell.
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Figure 2. Contribution of mode 4 to backscattering from spherical shell.
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The second example involves the backscattering off the end of a capped cylindrical
shell. The ratio of the mean radius a to the length L of the shell is 0.125, and the
ratio of the thickness h to the mean radius a of the shell is 0.01016 . The ends of the
cylinder are capped with circular disks having the same thickness as the shell. The
material properties of both the shell and endcaps are

e Density = 8977 Kg/m 3

e Young's modulus = 2.09 x 1011 N/m 2

* Poisson's ratio = 0.308.

The material properties of the water are

" Density = 998 Kg/M 3

" Sound Speed = 1486 m/s.

The dotted curves in figures 3 to 8 represent the contribution of selected individual
terms in the summation shown in equation (19) to the backscattering off the end of
the cylinder. The scattered pressure is normalized by the high-frequency plane-wave
approximation to the rigid backscattered pressure. The plane wave approximation
involves setting ps = pcvs on the surface, where p, and v, are the scattered pressure
and normal velocity respecti\-ely. For a rigid body, the scattered and incident normal
velocities on the surface are related by v, = -vi,,. Thus, the plane wave approxima-
tion reduces to setting P, = -pcvinc on the surface. The far-field scattered pressure
can be obtained from the approximate values of p, and v, on the surface. The nor-
malized scattered pressure used in 'his report is very similar to the form function,
which is defined to be the ratio of the scattered pressure to the geometric acoustics
approximation of the scattered pressure. In fact, for a sphere, the two normalizations
are the same. The normalized frequency ka is defined by ka = 2wrfa/c where f is
the frequency, a is the mean radius, and c is the sound speed in water. The dotted
curves in figures 9 ,nu 10 represent the contribution of a partial sumn of selected terms
in equation (19) to the scattered field. The solid curve in each of these figures rep-.
resents the normalized pressure (in dB) with the rigid scattering excluded. Figures
Il to 16 show the in vacuo mode shapes of the modes used in figures 3 to 8. It is
clear from these figures that certain of the peaks in ',",e scattered field are due to a
single in vacuo mode. For example, ohe first peak at about ka = 0.045 is primarily
due to mode 2 (see figure 3). As can be seen from figure 11, mode 2 is predominately
an end cap mode. However, certain features such as the hump in the ka = d.3-0.5
range and the humps in the ka = 0.6- 1.0 range require the contribution of several in
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vacuo modes (see figures 9 and 10). Figures 17 and 18 show the surface pressure and
normal velocity on the cylinder at ka = 0.04228 . Notice that the normal velocity
distribution is very similar to the in vacuo mode shape 2. Figures 19 and 20 show the
surface pressure and normal velocity on the cylinder at ka = 0.95136. Since multiple
modes are involved at this frequency, there is no correspondence between the normal
velocity distribution and any single mode shape.

Since the total number of in vacuo modes used is often very large, it is useful to
first scan a frequency range to determine which modal contributions exceed a preset
threshold. The results of a sample scan are shown in table 1 for the cylinder problem,
with a threshold of 10 dB over the frequency range ka = 0.025-0.3 .
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Figure 3. Contribution of mode 2 to scattering from cylinder.

BACK SCA17ERING FROM END OF CYLINDER

X101 ALA

R 4

3

-2

100 0.25 0.50 0.75 1.00 125 1.50 1.75 2D0
X10*

ka

Figure 4. Contribution of mode 3 to scattering from cylinder.
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Figure 5. Contribution of mode 5 to scattering from cylinder.
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Figure 6. Contribution of mode 6 to scattering from cylinder.

10



BACKSCA=TRLNG FROM END OF CYLINDER

X1ALL-RS WATIAL .

co 4

3

c 2

N0

1~00 0.25 850 0.75 1.00 1.25 1.50 1.75 2.00

ka

Figure 7. Contribution of mode 14 to scattering from cylinder.
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Figure 8. Contribution of mode 15 to scattering from cylinder.
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Figure 9. Contribution of modes 2,3,4,5,6,38,44.
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Figure 10. Contribution of modes 2,3,4,5,6,14,15,38,44.
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MODE= 2. ka=O.09429

Figure 11. Cylinder mode shape 2.

MODE = 3, ka = 0.09788

Figure 12. Cylinder mode shape 3.
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MODE = 5, ka = 0.37568

Figure 13. Cylinder mode shape 5.

MODE= 6, ka = 0.82979

Figure 14. Cylinder mode shape 6.
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MODE = 14. ka = 3.0073

Figure 15. Cylinder mode shape 14.

MODE= 15, ke=3.1496

Figure 16. Cylinder mode shape 15.
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CHIEF VELOCITIE FOR ka = 0.04228
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Figure 17. Normal velocity on cylinder, ka =0.04228.

CHIEF PRESSURES FOR ka = 0.04228
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Figure 18. Surface pressure on cylinder, ka=0.04228.
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CIEF VELOCITES FOR ka = 0.95136
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Figure 19. Normal velocity on cylinder, ka =0.95136.

CHIEF PRESS UR ES FOR ka =O.95136
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Figure 20. Surface pressure on cylinder ka =0.95136.
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Table 1. Sample modal identification scan.

ka I Mode# Mag(dB)

0.025 2 27.1
0.050 2 32.2

3 12.5
0.075 2 28.1
0.100 2 26.5
0.125 1 13.3

2 25.3
3 12.6

0.150 1 17.2
2 24.3

3 15.1
4 10.5

0.175 1 21.0
2 23.7
3 17.5
4. 15.4
5 10.4

0.200 1 26.2
2 25.7
3 20.4
4 24.3
5 20.1

0.225 1 46.1
2 11.9
3 33.0
4 23.1
5 45.7
5 4.5

0.250 1 16.5
3 15.4
4 11.9
5 25.4

0.275 3 18.5
5 21.5

0.300 1 14.9
3 19.6
5 19.8

18



CONCLUSIONS

The scattering from elastic bodies immersed in a fluid is highly variable with
frequency, due to the many resonant modes of the structure. Computational models
for solving structural-acoustic scattering problems have been developed at NOSC. The
scattered pressure field in these models can be represented as a sum of contributions
from in vacuo modes of the structure. Although the overall spectral response of a
scatterer is typically due to the contribution of hundreds of such modes, it has been
shown that the response in narrow frequency bands (especially near sharp peaks) is
often dominated by the contributions of a small number of modes. Auxiliary programs
have been developed to identify and display these modal contributions along with the
associated surface pressure and velocity distributions. The results obtained have
provided valuable insight into the mechanisms responsible for features observed in
the farfield response.
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